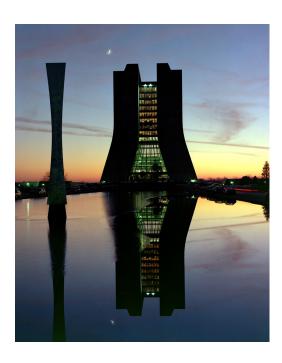
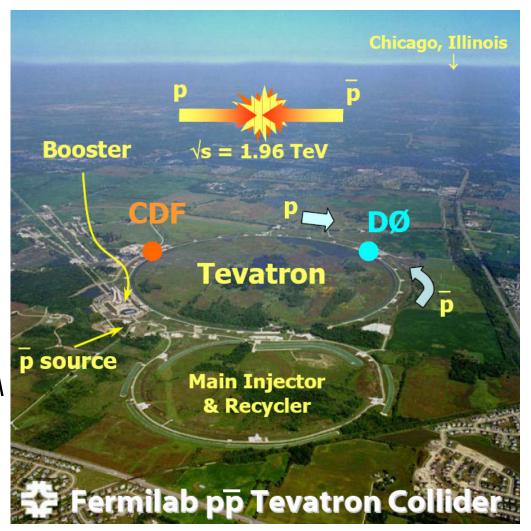
Imperial College London



Higgs Searches at the Tevatron

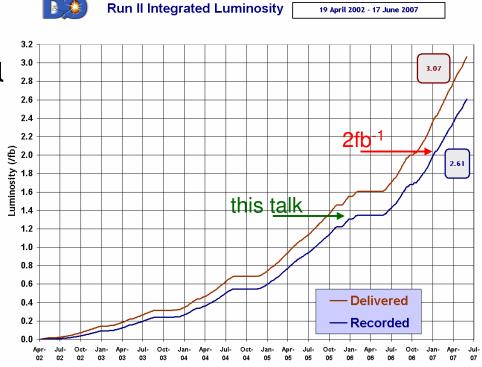
Gavin Davies
On behalf of the CDF and DØ Collaborations



Outline

- Introduction
 - Tevatron & experiments
- Standard Model (SM) Higgs
 - Introduction
 - Results
 - Low & high mass
 - Combination
- Non-SM Higgs
 - Minimal Supersymmetric SM
- Prospects & Conclusions
 Results shown use ~1fb⁻¹
 (2fb⁻¹ this summer)

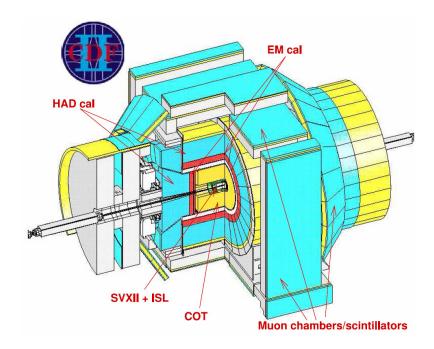
[Thanks to all my Tevatron colleagues]

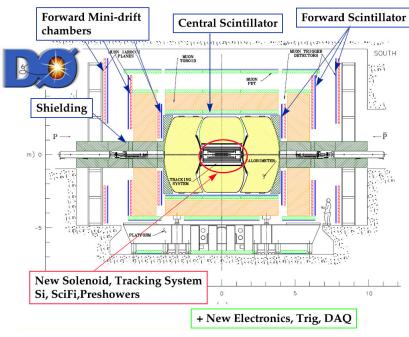

Tevatron Performance

Tevatron continues to perform well

- Over 3fb⁻¹ delivered to each experiment
- Peak luminosities of ~3 x10³²

Total Luminosity 8.2 fb-1 0.0 0.1 10/103 93004 93005 93006 93007 92908 92909


 Performance matching design integrated luminosity of ~8fb⁻¹ by 2009


CDF and DØ experiments

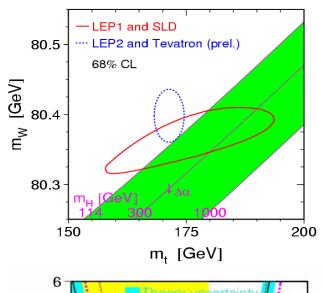
- Both detectors extensively upgraded for Run IIa
 - New silicon vertex detector
 - New tracking system
 - Upgraded muon chambers

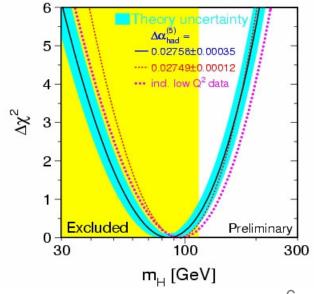
CDF: New plug calorimeter & ToF

- DØ
 - New solenoid & preshowers
 - Run IIb: New inner layer in SMT
 & L1 trigger

Standard Model Higgs

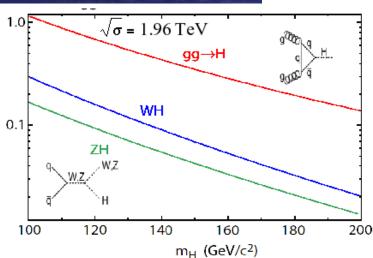
- Introduction
 - Constraints on the Higgs
 - Higgs Production at Tevatron
 - Techniques / status
- Low mass
 - $WH \rightarrow l\nu bb$
 - $ZH \rightarrow llbb$
 - $-ZH \rightarrow vvb\bar{b}$
- High mass
 - $H \rightarrow WW$
- Combination

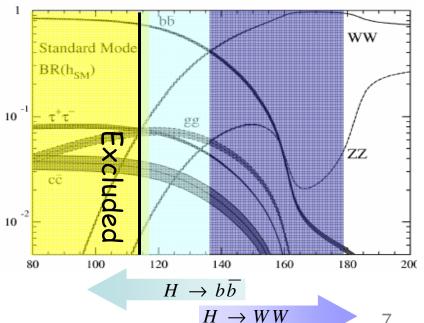



Standard Model Higgs

- Higgs mechanism
 - Additional scalar field in SM Lagrangian
 - \rightarrow mass to W,Z & leptons
 - Predicts neutral, spin 0 boson
 - But not its mass
- Direct searches at LEP2
 - m_H > 114.4 GeV @95%CL
- Improved m_t & m_w tighten indirect constraints:
 - m_H < 144 GeV @ 95%CL (EW fit)
 - m_H < 182 GeV if LEP2 limit included

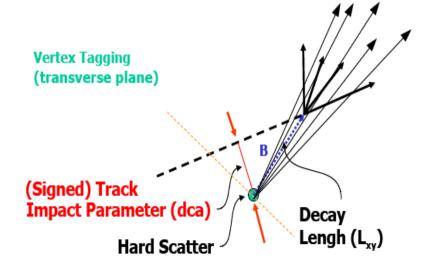
→ A light Higgs is favoured





SM Higgs Production & Decay

- Small production cross-sections
 - 0.1 -1 pb cf WZ, ZZ, single top @~2-4pb
- Branching ratio dictates search
- m_{H} < 135 GeV
 - $gg \rightarrow H \rightarrow bb$ overwhelmed by multijet (QCD) background
 - Associated WH & ZH production with $H \rightarrow bb$ decay
 - Main backgrounds: Wbb, Zbb, W/Z jj, top, di-boson, QCD
- $m_H > 135 \text{ GeV}$
 - $gg \rightarrow H \rightarrow WW$
 - Main background: WW


B-tagging

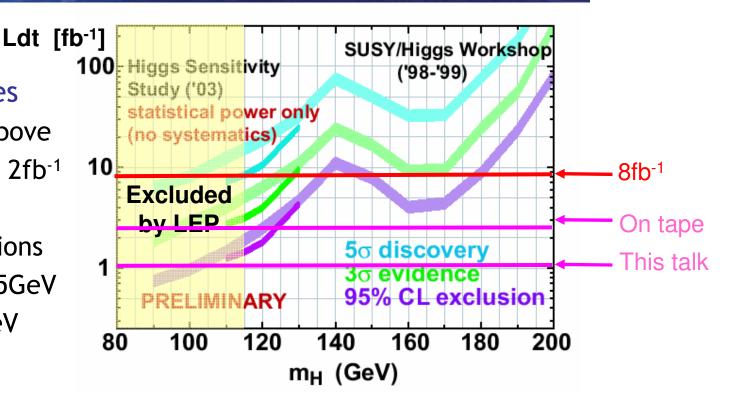
- Critical for low mass $H \rightarrow bb$
 - Improves S/B by > 10
- Use lifetime information
 - Correct for MC / data differences
 - Measured at given operating points

CDF: Secondary vertex reconstruction

- Neural Net improves purity
- Inputs: track multiplicity, p_T , vertex decay length, mass, fit
- Loose = 50% eff, 1.5 % mistag
- Tight = 40% eff, 0.5 % mistag
- Analyse separately ("tight") single & ("loose") double tags

DØ: Neural Net tagger

- Secondary vertex & dca based inputs, derived from basic taggers
- High efficiency, purity
- Loose = 70% eff, 4.5% mistag
- Tight = 50% eff, 0.3% mistag



Higgs Sensitivity

Previous studies

- Sensitivity above
 LEP starts at 2fb⁻¹
- 8fb⁻¹: Exclusions from 115-135GeV & 145-180GeV

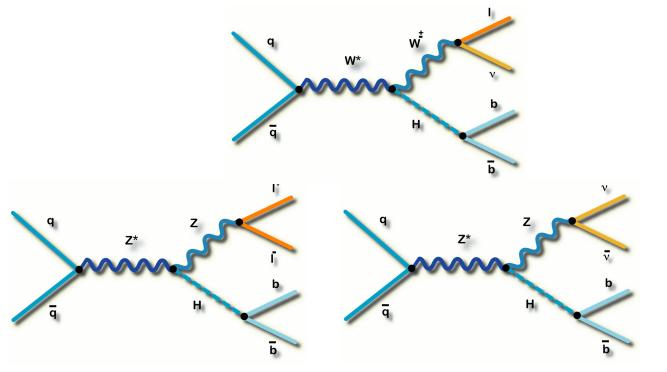
Now:

- Measuring SM backgrounds (tt, Zbb, Wbb, WZ, ZZ, single top!)
- Optimizing analysis techniques
- 1st combined Higgs limits & comparing to predictions

Low mass SM Higgs

- Introduction
- Low mass

$$-WH \rightarrow lvb\overline{b}$$


-
$$|ZH \rightarrow llb\overline{b}|$$

$$ZH \rightarrow vvb\overline{b}$$

- High mass
- Combination

Leptonic decay of W / Z boson provides 'handle' for event

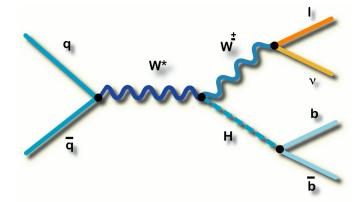
H → bb helps reduce SM background

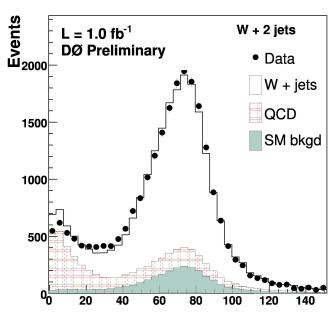
$WH \rightarrow lvb\overline{b}, l = e, \mu$

Highest cross-section

- Use electron and muon channels

Selection


- Isolated lepton, $p_T > 20$ GeV
- Missing $E_T > 20$ GeV
- Two jets:
 - $p_T > 15 \text{GeV (CDF)}$
 - $p_T > 20$ GeV (DØ)

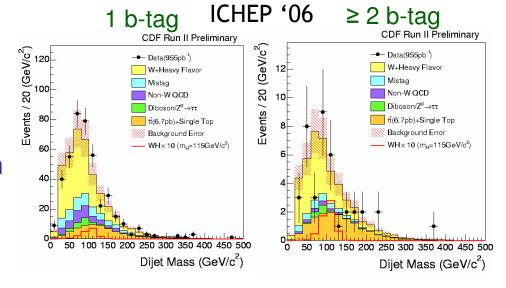

Backgrounds

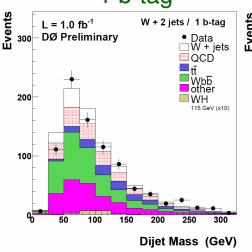
- W+jets, QCD, top, di-boson

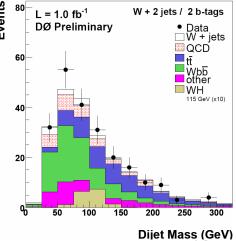
Analyses

- CDF & DØ: Cuts based analyses
- DØ also has a Matrix Element analysis

W Transverse Mass (GeV)


$WH \rightarrow lvbb$, $l = e, \mu$

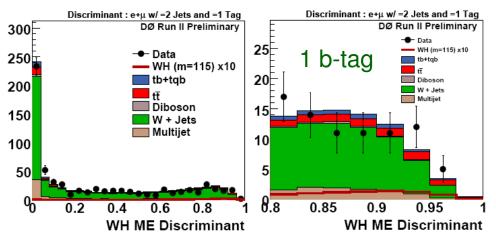

- Separate 1 "tight" &2 "loose" b-tag channels
- No significant excess
- Cross section limits derived from invariant mass distributions
- 95% *CL* upper limits (pb): m_H =115 GeV (SM expected: 0.13 pb)
 - CDF: 3.4 (2.2) pb obs. (expect.)
 - DØ: 1.3 (1.1) pb obs. (expect.)

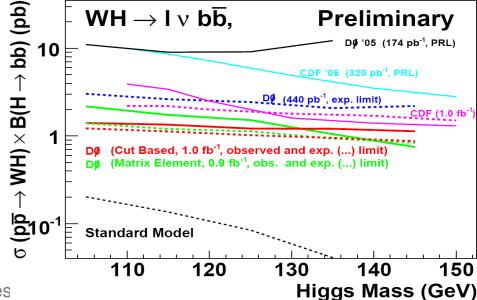

 $\sigma_{\text{excl}} / \sigma_{\text{SM}} \sim 8.8$ (best expect.)

- Moriond '07 vs ICHEP '06
- OR all triggers
- NN b-tagger

1 b-tag Moriond '07 2 b-tag

$WH \rightarrow lvb\overline{b}, l = e, \mu$

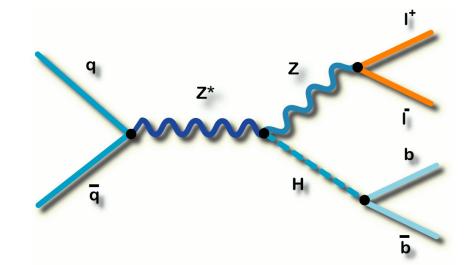



- Matrix Element: Use LO ME
 - → event probability densities for signal and background

$$D(\vec{x}) = \frac{P_{WH}(\vec{x})}{P_{WH}(\vec{x}) + \sum_{i} c_{i} P_{Bi}(\vec{x})}$$

- Optimized for single top (will be re-optimized)
- Cross section limits derived from the per-channel discriminant distributions
- 95% *CL* upper limit (*m_H*=115 GeV)
 1.7 (1.2) pb obs. (expect.)
- Similar ratio to SM as cuts based analysis (~9)

Matrix element analysis

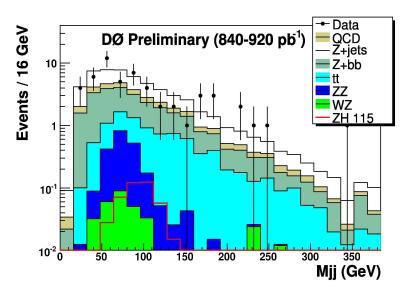


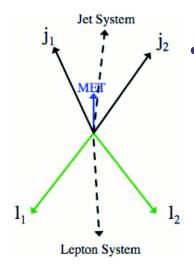
$ZH \rightarrow llb\overline{b}, l = e, \mu$

- Cleanest low mass channel, but low cross section
- Selection:
 - Loose lepton ID
 - $m_{ll} \sim M_Z$, opposite charge
 - Isolated from jets
 - Two jets:
 - $p_T > 25,15$ GeV (CDF)
 - $p_T > 20$ GeV (DØ)

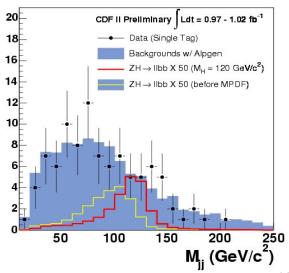
- Backgrounds:
 - Z+jets, top, WZ, ZZ, QCD
- Analyses (2006)
 - DØ: ≥ 2 b-tags. Cross-section limits from dijet invariant mass distribution within search window
 - CDF: 1 b-tag. 2-D NN to discriminate against two largest backgrounds (tt vs. ZH and Z+jets vs. ZH). Limits from NN distribution

$ZH \rightarrow llb\overline{b}$, $l = e, \mu$


- '2006' Results
 - 95% *CL* upper limits (pb):

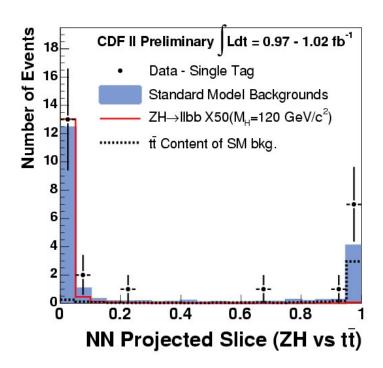

 m_H =115 GeV (SM expected: 0.08 pb)

• DØ: 2.7 (2.8) obs. (expect.)

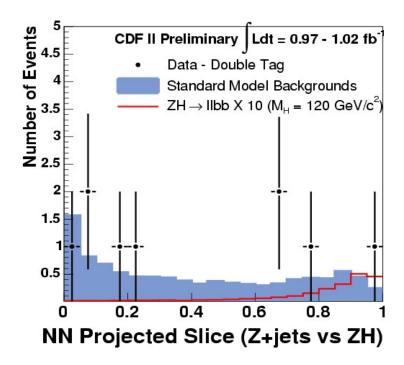

• CDF: 2.2 (1.9) obs. (expect.)

 $\rightarrow \sigma_{\text{excl}} / \sigma_{\text{SM}} \sim 23$ (best expect.)

- CDF (Moriond QCD '07)
 - Adjust jets to balance missing E_T
 - Improved dijet mass resolution



$ZH \rightarrow llb\overline{b}$, $l = e, \mu$


- CDF Moriond QCD '07 cont'd
 - Additionally split sample into 1 & 2 b-tags, improved 2D NN
- m_H=115 GeV

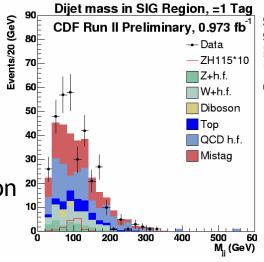
$$\sigma_{\text{excl}} / \sigma_{\text{SM}} \sim 16$$

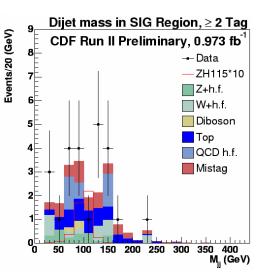
Equivalent to x2 more data

Again clear improvement in analyses

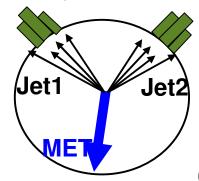
$ZH \to \nu \nu b \overline{b}, WH \to (l^{\pm})\nu b \overline{b}$

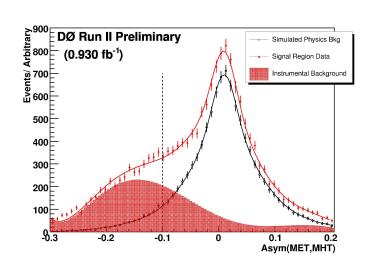
- Larger cross-section & acceptance but hard no visible leptons & only 2
 jets in final state
 - Contribution from WH when I missed
- Selection
 - Two jets
 - CDF: > 60, 20 GeV; DØ: > 20GeV
 - Missing E_T (Not aligned in ϕ with jets)
 - CDF: > 75 GeV; DØ: > 50GeV
 - B-tags
 - CDF: Separate 1 & 2 b-tag sample; DØ: 1 tight + 1 loose
 - Veto on isolated leptons, max H_T (= $\sum P_T$)
- Backgrounds
 - Physics: W/Z + jets, di-boson, top measured with Monte Carlo
 - Instrumental: Mis-measured missing E_T together with QCD jets determined from data




$ZH \to \nu \nu b \overline{b}, WH \to (l^{\pm})\nu b \overline{b}$

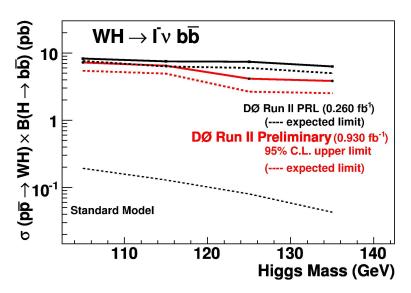
CDF (ICHEP'06)

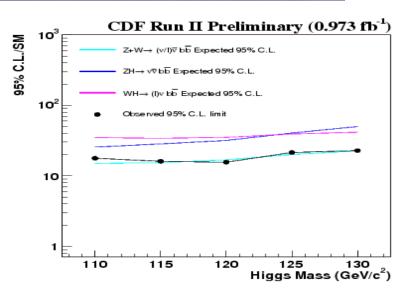

- Heavy flavour (h.f.) bkgs from MC
- Light jets from mistags, estimated from data
- h.f. normalized in control region

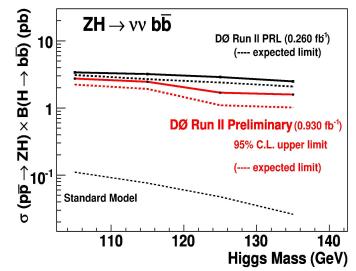


• DØ (Spring'07)

- Define 2 missing energy variables
 - MHT measured with jets
 - MET direct from calorimeter cells
 - Asymmetry isolates mis-measured jets



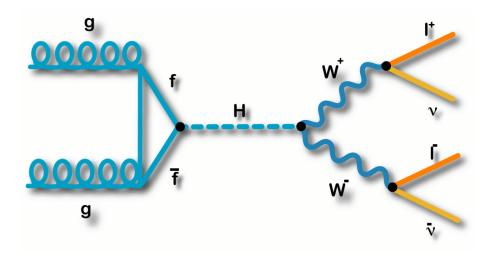

$ZH \to \nu \nu b \overline{b}$, $WH \to (l^{\pm})\nu b \overline{b}$



- Cross section limits derived from invariant mass distributions
 - Set limits for ZH and WH with the l unreconstructed
- m_H =115 GeV

 $\sigma_{\text{excl}} / \sigma_{\text{SM}} \sim 10$ (best expect.)

High mass SM Higgs



- Introduction
- Low mass
- High mass

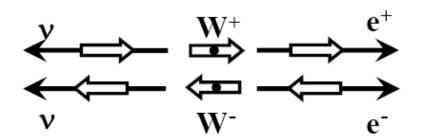
$$-H \rightarrow WW$$

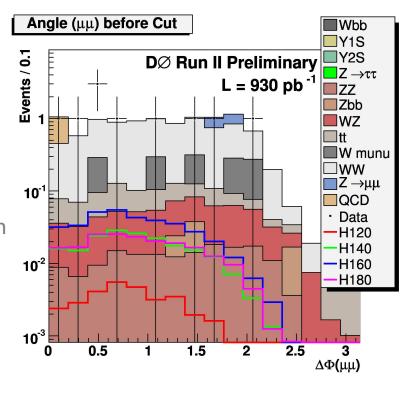
Combination

Main search channel for $m_H > 135 GeV$

Use ee, eµ, µµ channels

Signature:


High P_T opposite sign leptons (10-20GeV) Missing E_T

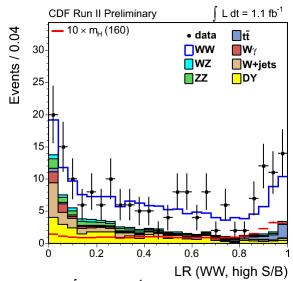


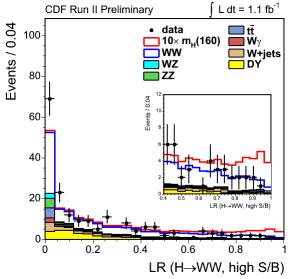
$H \to WW^{(*)} \to l^+ l^- \nu \overline{\nu}, \quad l = e, \mu$

- Analyses: CDF: cuts based (EW '07), ME (QCD '07) DØ: cuts based (ICHEP '06)
- Backgrounds
 - Drell-Yann, QCD, tt, SM WW dominates
- Selection
 - Missing $E_T > \approx 20 \text{GeV}$, isolation
 - Veto on # of jets, $H_T (= \sum P_T)$
 - m_H dependent cuts $(P_{T_i} m_{ll} \text{ etc})$
 - WW from spin 0 Higgs
 - Leptons prefer to point in same direction

- di-lepton opening angle $\Delta\phi_{ll}$ discriminates against dominant WW bkg.
- Cross section limit derived from $\Delta \phi_{ll}$ distribution (cuts based)

$H \rightarrow WW^{(*)} \rightarrow l^+l^-\nu\overline{\nu}, \quad l = e, \mu$

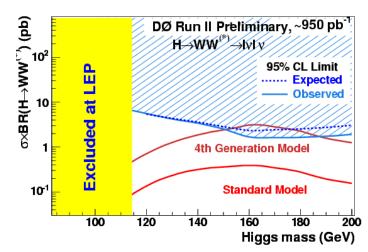


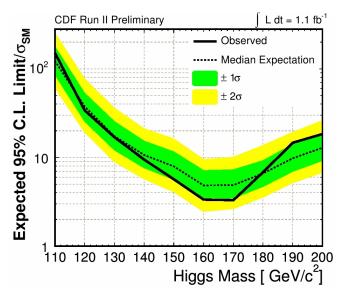

CDF Moriond QCD '07

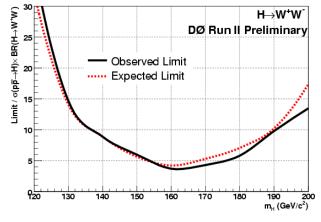
- Improved lepton acceptance
- Matrix Element approach
 - Use observed leptons & missing E_T (x_{obs})
 - Integrate over LO theory predictions for WW, ZZ, W+γ, W+jet, 10 Higgs masses
 - Construct LR discriminant from probabilities

$$LR(x_{obs}) = \frac{P_H(x_{obs})}{P_H(x_{obs}) + \Sigma_i k_i P_i(x_{obs})}$$

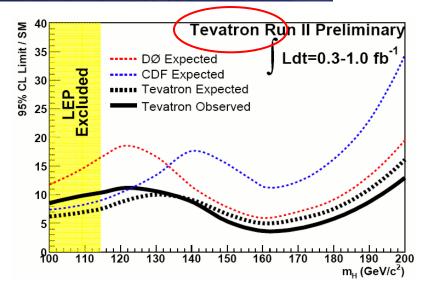
- Validate LR for background
- Limit set by fitting LR distribution

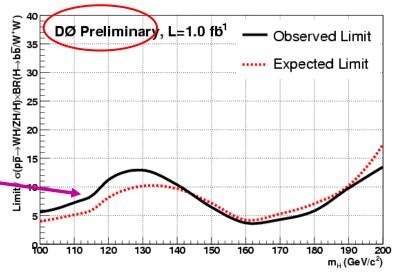





$H \rightarrow WW^{(*)} \rightarrow l^+l^-\nu\overline{\nu}, \quad l = e, \mu$

- m_H = 160 GeV
 - CDF result, Matrix Element:
 - x3.4 (x4.8) obs. (expect.) SM
 - Cuts based:
 - x9.2 (6.0) obs. (expect.) SM
 - DØ cuts based:
 - x3.7 (4.2) obs. (expect.) SM


- 4^{th} generation model already excluded for m_H = 150 - 185 GeV



Combination

- Summer '06 1st Tevatron combination
 Like 1 experiment with ~1.3fb⁻¹
- Much progress since
 - Better sensitivity in all channels
 - Advanced analysis techniques
 - NN b-tagging or event selection
 - ME methods
 - x~2 more luminosity
- Combinations ongoing
 - DØ alone now has tighter limits
 - Factor of 3 better at low m_H
 - Better than √L gain

Non-SM Higgs

- Introduction
- SM Higgs
- Non-SM Higgs

- Introduction
- Neutral Higgs bosons (φ) searches

$$\varphi \to \tau\tau$$

$$b\phi \rightarrow bbb$$

- Fermiophobic Higgs
- Prospects & Conclusions

Higgs bosons in the MSSM

In MSSM have 2 Higgs doublets

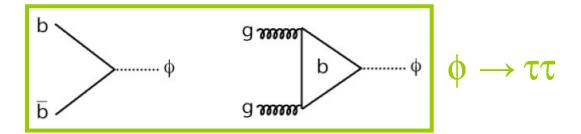
- H_{ij} (H_{d}) couple to up- (down-) type fermions
- Ratio of VEV's: $tan\beta = \langle H_u \rangle / \langle H_d \rangle$
- 5 Higgs particles after the EWSB: h, H, A, H⁺, H⁻
- h has to be light: $m_h < \sim 140 \text{ GeV}$
- At tree level, 2 independent parameters: m_A and $tan\beta$

• At large tan β:

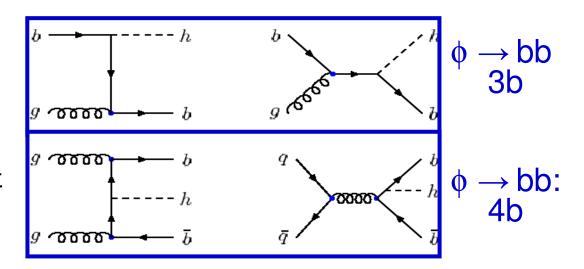
- Coupling of A, h/H to down-type fermions, e.g. b-quark, enhanced wrt SM \rightarrow production amplitude ~tan $\beta \rightarrow$ production cross section ~tan $^2\beta$
- h/H & A (denoted by ϕ) ~degenerate in mass \longrightarrow further increase in cross-section

For low & intermediate masses

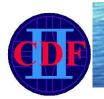
- Br ($\phi \rightarrow \tau \tau$) ~10%, Br ($\phi \rightarrow$ bb) ~90%



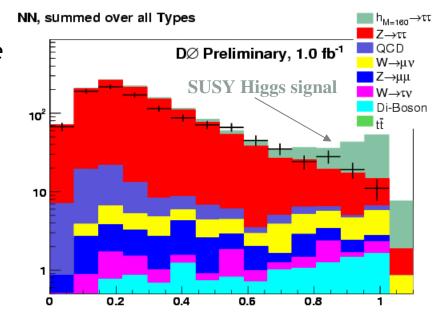
MSSM Higgs boson production

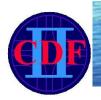


Signature

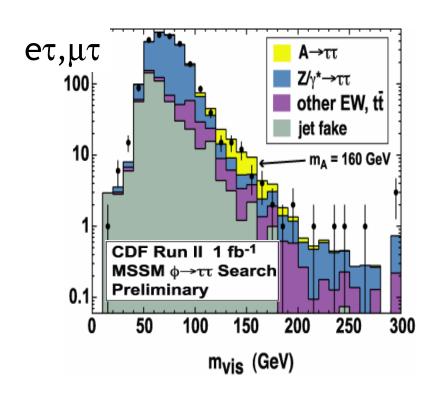

- Higgs decays to 2 τ 's
- Further decays of τ 's define final states

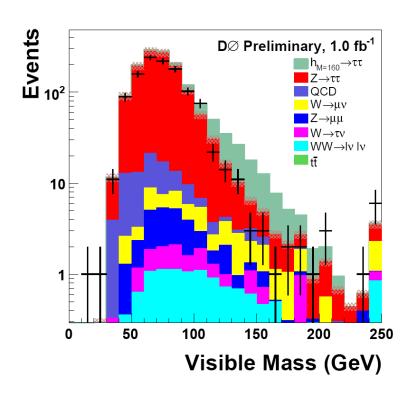
- 2 high P_T b-jets from Higgs
- 1 or 2 extra b-quarks
- Search for peak in dijet invariant mass


Similar overall sensitivities


Neutral MSSM Higgs → T_lT_{had}

- Main bkgs.: $Z \rightarrow \tau\tau$ (irreducible), W+jets, $Z \rightarrow ee, \mu\mu$, multijet, di-boson
- DØ (μ channel only):
 - Only 1 isolated μ separated from the hadronic τ with opposite sign
 - τ identification: NN based
 - M_W < 20 GeV removes most of remaining W boson bkg.
 - Optimized NNs to separate signal from bkg.

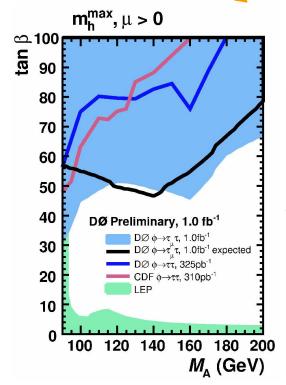

- CDF (e, μ , e+ μ channels)
 - Isolated e or μ separated from hadronic τ with opposite sign
 - τ identification: Variable-size cone algorithm
 - Jet background suppression: $|p_t^l| + |p_t^{had}| + |\mathcal{E}_T| > 55$ GeV
 - remove most of W bkg. by cutting on relative directions of the visible τ decay products and missing E_{T}

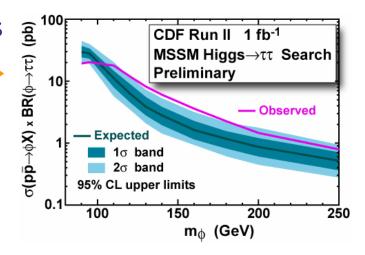


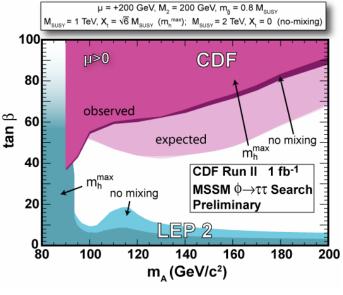
Neutral MSSM Higgs → てしてhad

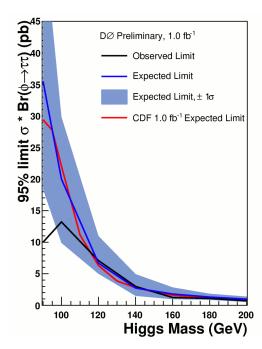
- CDF: Limits derived from m_{vis} distribution
 - Observed limits weaker than expected due to an excess in data sample, but significance $\leq 2\sigma$ once all search channels & windows considered

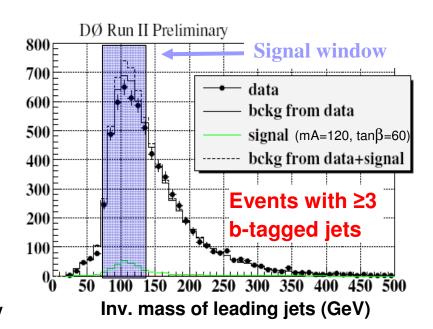
• DØ: Cross-section limits: NNs for the different tau types

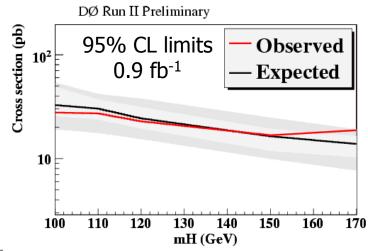



Neutral MSSM Higgs → TIThad



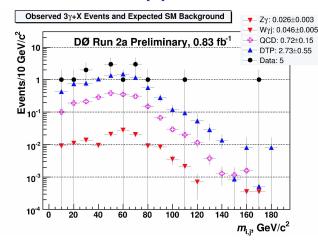

- Proceed to set limits
- $\sigma x Br (\phi \rightarrow \tau \tau)$
- MSSM parameter

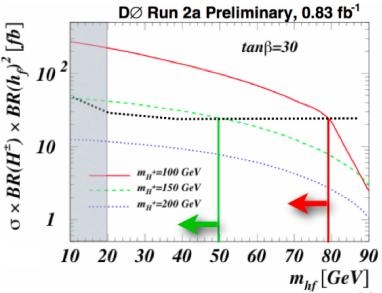



- •Use no-mixing & m_h^{max} benchmark scenarios
- $90 < m_A < 200 \text{ GeV}$, $\tan \beta > 40 - 60 \text{ excluded}$

Neutral MSSM Higgs → bb + b[b]

- DØ: ICHEP '06
- \geq 3 b-tagged jets: $p_T > 40, 25, 15 \text{ GeV}$
 - Invariant mass of 2 leading jets peaks at Higgs mass
- Backgrounds from data
 - Shape estimated from double-tagged dijet mass spectrum
 - Rate normalized outside signal window
- Agreement between data & predicted background → set upper limits
- Preliminary analysis being optimized


Fermiophobic Higgs $\rightarrow 3\gamma + X$



- Some extensions of SM: coupling of higgs to fermions suppressed
- Search for the channel:

$$p\overline{p} \to h_f H^{\pm} \to h_f h_f W^{\pm} \to \gamma \gamma \gamma (\gamma) + X$$

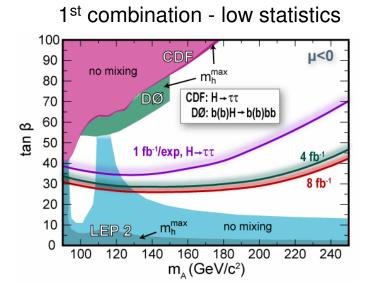
- Cuts
 - 3γ with $|\eta| < 1.1$, $E_T^{1,2,3} > 30$, 20, 15 GeV
- Backgrounds
 - Jets or electrons misidentified as γ and direct 3γ production
 - Estimated from data
- $H_T(3\gamma) > 25 \text{GeV}$
 - 0 events seen for 1.1 expected
 - 95% CL limit: $\sigma(hH^{\pm})$ < 25.3fb
- Exclusion on mass of h_f for different charged Higgs masses $(m_{H^{\pm}})$ & tan β

Prospects and Conclusions

- Introduction
- SM Higgs
- Non-SM Higgs
- Prospects and Conclusions

Prospects - SM Higgs

- Rapid evolution
 - Some single channels now as powerful as Tevatron results of ICHEP '06
- More sensitivity will be gained by
 - Larger data sets (~ x8 in total)
 - Include more channels e.g. τ final states
 - Improved di-jet mass, b-tagging and simulation
 - Improved analyses, especially use of multivariate techniques: e.g. NN, ME and decision trees
 - Recent single top and WZ results important step in use of such techniques to extract small signals in large backgrounds
- Need ~3fb⁻¹ to reach 95% exclusion at m_H = 115GeV or m_H = 160GeV
- Expect updated Tevatron combination for summer '07


Prospects - MSSM Higgs

- 1st results from 1fb-1 show promising sensitivity
 - Similar approach to improvements as for SM Higgs
- Short term (this summer)
 - New $\phi \rightarrow bb + b[b]$
 - From both experiments
 - New $\phi \rightarrow$ bb + b[b] & $\phi \rightarrow \tau\tau$ (& b $\phi \rightarrow$ b $\tau\tau$) combination

- Up to m_A ~250 GeV for large tan β
- Down to $tan\beta \sim 20$ for low m_A
- Or discovery

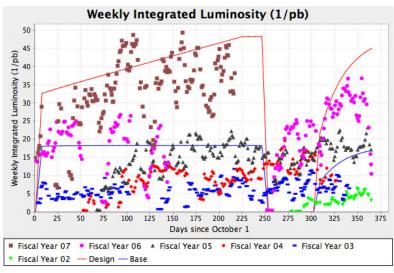
Conclusions

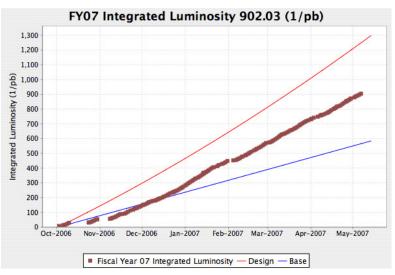
- Tevatron and CDF/ DØ experiments performing very well
 - Over 2.5 times more data under analysis
- Wide range of Higgs searches performed by CDF & DØ with up to 1 fb⁻¹
 Run II data:
 - No deviations from SM expectations observed
 - No signal observed in MSSM Higgs search, but already powerful!
- Rapid evolution in sensitivity
 - Increased use of multivariant techniques
- 1st Tevatron SM combination from Summer '06
 - Some individual channels already have similar limits!
- More work needed to reach desired sensitivity, but clear roadmap
 - At m_H =115GeV or 160GeV need ~3fb⁻¹ for 95% exclusion, ~8fb⁻¹ for 3 σ
 - Updated CDF and DØ combinations soon

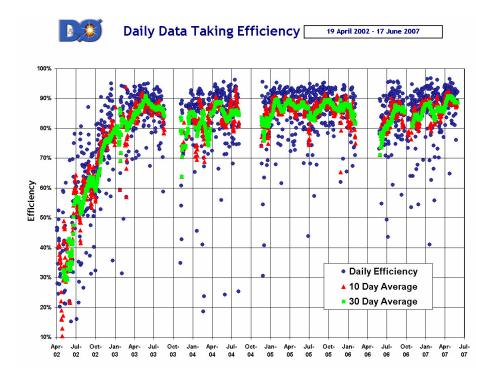
Very exciting times ahead!

And as the last speaker..

Many thanks to our hosts and the local organising committee

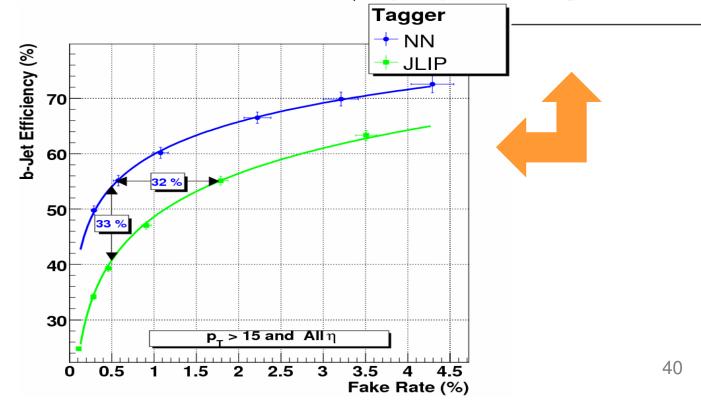



Backup slides



Tevatron & DØ

DØ B-tagging

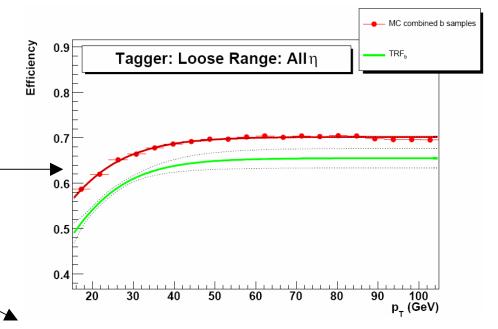


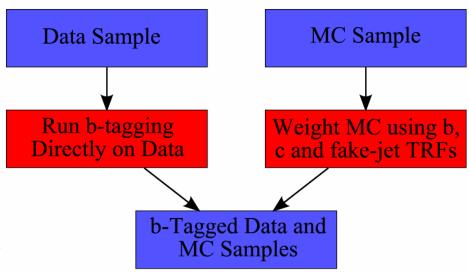
Several mature algorithms used:

- 3 main categories:
 - Soft-lepton tagging
 - Impact Parameter based
 - Secondary Vertex reconstruction

Combine in Neural Network:

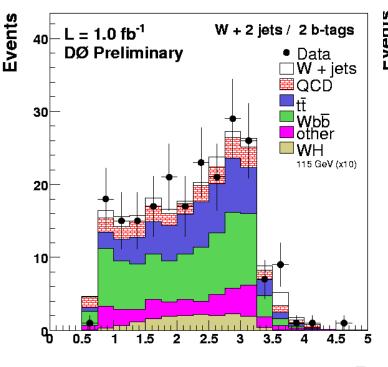
- vertex mass
- vertex number of tracks
- vertex decay length significance
- chi2/DOF of vertex
- number of vertices
- two methods of combined track impact parameter significances

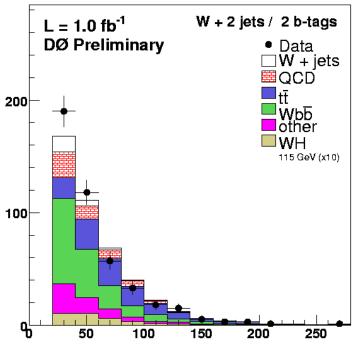



B-tagging - (DØ) Certification

- Have MC / data differences particularly at a hadron machine
 - Measure performance on data
 - Tag Rate Function (TRF) Parameterized efficiency & fake-rate as function of p_T and η
 - Use to correct MC b-tagging rate

- b and c-efficiencies
 - Measured using a b-enriched data sample
- Fake-rate
 - Measured using QCD data




DØ B-tagging gains

- Update b-tagging optimization (as compared to Single-Top result)
 - Use asymmetric *TIGHT* + *LOOSE* b-tagging thresholds for double-tagged jet sample (*gain* ~40% in sensitivity)
 - For WH \rightarrow lvbb, separate orthogonal 2 b-tag and 1 b-tag samples to salvage lost efficiency (gain ~15% in sensitivity)

SM Summary

	CDF limit (1fb ⁻¹)	DØ limit (1fb ⁻¹)			
Analysis	Factor above SM	Factor above SM			
	Observed (expected)	Observed (expected)			
Z/WH→MET+bb @ 115					
Technique: M _{jj}	16 (15)	14 (9.6)			
WH→lnbb @ 115					
Technique: M _{jj}	26 (17)	11 (8.8)			
Technique: ME		12 (9.5)			
ZH→llbb @ 115					
Technique: M _{jj}		23 (22)			
Technique: NN2D	16 (16)				
H→WW→II@ 160					
Technique: Δφ(l,l)	9.2 (6.0)	3.7 (4.2)			
Technique: ME	3.4 (4.8)				
h→ τ τ @ 160					
μ <0, no mixing	tan β< 69 (47)	tan β< 44 (54)			

SM evolution

Based on DØ current limits, what could we achieve?

<u>Ingredient</u>	Equiv Lumi <u>Gain</u>	Xsec Factor MH=115 GeV	Xsec Factor MH=160 GeV
Today with 1fb-1	-	5.9	4.2
$Lumi = 2 fb^{-1}$	2	4.2	3.0
b-Tag (Shape + LayerØ)	1.5	3.4	3.0
Multivariate Techniques	1.7	2.6	2.3
Improved mass resolution	1.5	2.1	2.3
New Channels	1.3/1.5	1.9	1.9
Reduced systematics	1.2	1.7	1.7
Two Experiments	2	1.2	1.2

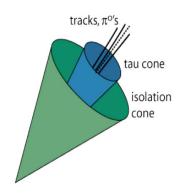
→ need ~3 fb⁻¹ to reach 95 % C.L. exclusion

MSSM benchmarks

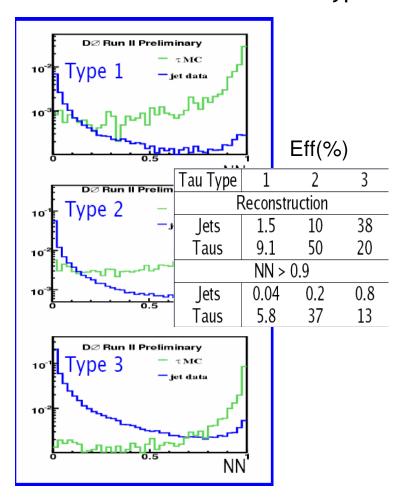
- Five additional parameters due to radiative correction
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - X_t (related to the trilinear coupling $A_t \rightarrow \text{stop mixing}$)
 - M₂ (gaugino mass term)
 - μ (Higgs mass parameter)
 - M_{gluino} (comes in via loops)

Two common benchmarks

- Max-mixing Higgs boson mass m_h close to max possible value for a given $tan \beta$
- No-mixing vanishing mixing in stop sector → small mass for h


	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
X,	2 TeV	0
M ₂	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

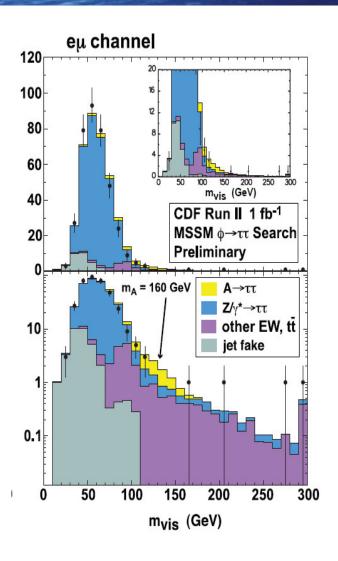
Tau ID



CDF: Isolation based

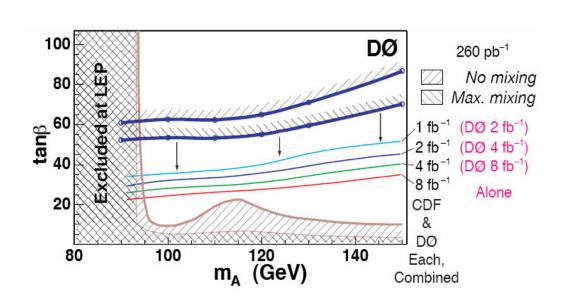
- Require 1 or 3 tracks, p_T > 1GeV in the isolation cone
 - For 3 tracks total charge must be ±1
 - $p_T^{had} > 15$ (20) GeV for 1 (3) prongs
 - M^{had} < 1.8 (2.2) GeV
- Reject electrons via E/p cut
- Validated via W/Z measurements
- Performance
 - Efficiency ~ 40-50%
 - Jet to tau fake rate ~0.001-0.005

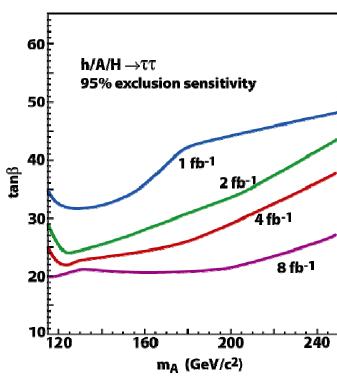
DØ: 3 NN's for each tau type



Validated via Z's

CDF - MSSM Higgs $\rightarrow \tau_l \tau_{had}$




No excess seen in this channel

MSSM evolution

